
8 The Delphi Magazine Issue 31

Surviving Client/Server:
Three-Tier Applications With MIDAS
by Steve Troxell and Scott Samet

When I first started program-
ming, I cut my data storage

teeth on the venerable sequential
access text file. Add new records to
the end of the file and read all the
records from the top of the file
until you found the one you
wanted. You want fields? Parse the
string into its constituent data ele-
ments. A really slick program
would use a random access file
which could jump a specified
number of records into a file and
grab a single record lying any-
where within the file. Ooooo! There
were no indexes, other than what
you might handcraft on your own
in the form of another data file.
There were no record locks for
multiple user applications unless
you rolled your own. There was no
ODBC, SQL Links, DB-LIB, BDE, or
any other kind of acronymic driv-
ers between you and your data. It
was real programming back then. If
you could read bytes, you could
mess with the data. Not this sissy
stuff we do today...

Over the years we’ve learned
how to deal with database engines
like dBase and FoxPro. Then we got
a grip on client/server and SQL.
And just when we think we’ve
finally got it licked, they throw
another curve ball at us and call it
three-tier architecture.

Apparently, our front-end appli-
cations aren’t good enough even to
talk to a database server directly.
They want us to develop a middle-
man app to serve as go-between for
the keeper of the data and all the
peasant client apps trying to get
the real work done. It’s kind of like
handing over your vacation
request to the boss’s secretary,
who returns it to you sometime
later with the boss’s signature on
it. You don’t know how the signa-
ture got there, or even if it’s really
the boss’s signature. But you don’t
care, you got a signed vacation

request and you’re off to the
Bahamas. Just remember to take
your laptop.

So what is all this talk about
three-tier development and just
what is Delphi going to do to help
us out here? Borland has conjured
up some very sophisticated com-
ponents to facilitate three-tier
development with Delphi. This
technology comes under the name
MIDAS, standing for Multi-Tier Dis-
tributed Application Services, and
that’s what this month’s column is
all about. For this topic, I’ve leaned
a great deal on Scott Samet, whom
some of you may recognize from
Team B. I’m fortunate enough to be
working semi-directly with Scott
now, who was investigating MIDAS
before I had a chance to. I am grate-
ful for his help in putting together
the information in this article.

Tiering Your Applications
First, let’s get a grip on the termi-
nology of tiers. The notion of a
system being tiered has nothing to
do with the number of physical
machines the system employs. The
determining factor is the number
of independent processes or appli-
cations that are talking to each
other to make the entire system
work. For example, a Delphi appli-
cation using the BDE to access
Paradox data is a single-tier
system. A web browser fetching
HTML pages from a web server is a
two-tiered system.

A single-tier architecture is one
in which a single application con-
tains all the code to present the
user interface, apply the logic, and
manipulate the data within an
external data file (see Figure 1).
Even if some of these layers are
implemented within DLLs, it is
still a single-tier architecture
because there is only one running
process handling all the work. For
example, within a typical Paradox

application, all the code for
accessing the data stored in the
Paradox tables, as well as the code
for applying logic to that data and
presenting it to the user, is con-
tained within the same applica-
tion. If you want to display all the
customers in Germany on the
screen, then your application must
execute code to search the Para-
dox tables, find the records con-
taining customers in Germany,
then display the matching records
on the screen. Note that even if the
data resides on a remote machine,
this is still a single-tier model.

With the advent of client/server
technology came the notion of
two-tiered systems. Here we have
a database server, running as a
separate application, in charge of
direct access to the data. Separate
client applications connect to this
server, making requests to receive
data from or apply data modifica-
tions to the database. We have two
independently running processes
communicating with each other,
and hence two tiers (see Figure 2).
The significance of the separate
server tier is that many different
client applications, possibly even
written in different languages, can
share services and logic provided
by the server. Also, there can be a
significant reduction in network

ApplicationApplication

Data Access LayerData Access Layer

ExternalExternal
Data FileData File

Data Logic and VData Logic and Validation Layeralidation Layer

User Interface LayerUser Interface Layer

➤ Figure 1: Single-Tier Architecture

10 The Delphi Magazine Issue 31

traffic because most of the record
filtering logic can be performed by
the database server and only the
matching results returned to the
client workstations. Finally, the
performance of the database
server tier can be scaled independ-
ently of the client workstations by
beefing up the server hardware to
deal with an increased load.

Three-tier systems go one step
further in isolating the access to
the database by creating an appli-
cation server between the client
front-end and the database server.
In this model, the client app does
not directly connect to the data-
base server, but instead connects
to a ‘middle tier’ application
server, which in turn connects to
the database server (see Figure 3).

Can We Talk?
In the two-tier model, the client
applications typically communi-
cated with the database server via
a native database API or ODBC
driver. This driver would normally
be implemented in a DLL hosted on
each client workstation. This is
also how our application server
communicates with the database
server in a three-tier model. But
how do the client applications get
in touch with the application
server?

Multi-tier applications in Delphi
are based on COM objects. In actu-
ality, the application server consti-
tuting the middle tier is an OLE
Automation server, the client
applications are OLE clients. So
our objects are able to talk to each
other by virtue of COM. For an
excellent primer on the wonderful
world of COM, check out Dave
Jewell’s series Delphi Meets COM
starting in Issue 28 of The Delphi
Magazine.

COM itself is restricted to inter-
object communication on a single
machine. To make multi-user,
multi-tiered database applications
work, we rely on Distributed COM
(DCOM), which extends COM’s
capabilities across multiple
machines on a network. In fact,
since DCOM is based on TCP/IP, it
even allows different machines to
communicate via the Internet. This
is a significant point in multi-tier

SERSERVER TIERVER TIERCLIENT TIERCLIENT TIER

PhysicalPhysical
DatabaseDatabase

Database ServerDatabase Server

Data Logic and VData Logic and Validation Layeralidation Layer

Data Access LayerData Access Layer

Client ApplicationClient Application

DatabaseDatabase
ConnectivityConnectivity
MiddlewareMiddleware

(BDE, ODBC, etc)(BDE, ODBC, etc)

Data Logic and VData Logic and Validation Layeralidation Layer

User Interface LayerUser Interface Layer

➤ Figure 2: Two-Tier Architecture

APPLICAAPPLICATION SERTION SERVER TIERVER TIER

CLIENT TIERCLIENT TIER

Client ApplicationClient Application

User Interface LayerUser Interface Layer

MIDAS ConnectivityMIDAS Connectivity MiddlewareMiddleware
(DBCLIENT(DBCLIENT.DLL).DLL)

Application ServerApplication Server

Data Logic and VData Logic and Validation Layeralidation Layer

Database ConnectivityDatabase ConnectivityMiddlewareMiddleware
(BDE, ODBC, etc)(BDE, ODBC, etc)

DADATTABASE SERABASE SERVER TIERVER TIER

Database ServerDatabase Server

Data Logic and VData Logic and Validation Layeralidation Layer

Data Access LayerData Access Layer

PhysicalPhysical
DatabaseDatabase

➤ Figure 3: Three-Tier Architecture

development. The in-house work-
stations can interface with the
same application server as a
browser-hosted application. This
opens quite a few opportunities for
leveraging the enterprise data to
customers, remote offices, and
even off site workers.

DCOM is native to Windows NT
4.0 but can also be installed on
Windows 95 by downloading the
appropriate files from Microsoft’s
website. Running server objects on
NT machines and client objects on
Windows 95 machines should pose
no problems. However, using a
Windows 95 machine as a DCOM
server requires a bit more
configuration.

Borland’s MIDAS technology in
Delphi is a layer on top of DCOM.
MIDAS facilitates the handling of
distributed datasets through TPro-
vider (in the server) and TClient-
DataSet (in the client) Delphi
components. While these compo-
nents use DCOM to communicate
with each other, MIDAS further
encapsulates their services within
the DBCLIENT.DLL library. MIDAS
client applications must be
deployed with the DBCLIENT.DLL
library. MIDAS server applications
must be deployed with DBCLI-
ENT.DLL, IDPROV32.DLL, STDVCL32.
DLL and, of course, the BDE which
is used to access the database
server.

Advantages Of
Three-Tier Design
Ok, three-tier sounds interesting,
but why bother? Actually there are
a number of benefits to be gained
from this architecture.

Since the application server is
the only piece that directly con-
nects to the database, it is the only
machine requiring the database

12 The Delphi Magazine Issue 31

development will obviously be in
two parts: the server project and
the client project. Life is just a
whole bunch easier if we start with
the server application. What we
must first realize is that we are cre-
ating a server application, which
contains a class definition for an
OLE Automation server object. The
server object descends from a
special COM-enabled descendant
of TDataModule, which is built for us
by the Remote Dataset Wizard. The
server application wraps around
the server object and gives us a
user interface into the workings of
the server object, if need be. Typi-
cally, production server applica-
tions will have no user interface.

Start a new Delphi project then
select File | New | Remote Data
Module from the menu. This starts
the Remote Dataset Wizard as
shown in Figure 4. We must pick a
class name for our OLE automation
object. This is the name by which
our OLE clients will identify the
server they wish to connect to.
Then we must pick the type of
instancing we will use.

Server Class Instancing
The Instancing selection defines
how the server object is instanti-
ated as clients make connections.
There are three choices: internal,
single and multiple instancing.

Internal instancing means the
interface to the COM object is not
available outside the application
server. This is how you would
create an ‘in-process’ server since
the COM interface is only available
within the same process space. We
won’t say much about in-process
servers here, as our interest lies in
full-blown multi-process systems.

With single instancing, each time
a new client connects to the OLE
server, a completely separate
instance of the server application

➤ Figure 4

is launched. So if three clients were
connected to the same server
object, there would be three
instances of the server application
running on the server machine.
There is a single instance of the
server object (the Remote Data
Module) per instance of the server
application. Note that you can still
have any number of clients con-
nected at the same time, they each
simply get their own copy of the
server application.

Multiple instancing is probably
how you’ll want to define most
multi-tier servers. In this case,
there is only one instance of the
server application, but as each
client connects, a separate
instance of the server object
(Remote Data Module) itself is cre-
ated and managed by the server
application.

The Remote Dataset Wizard
automatically generates the type
library files for the OLE object. In
the same manner in which a Delphi
unit’s interface section describes
the unit’s Delphi objects so other
units can use them, a type library
describes COM objects in a way
that allows other programs to use
them. Type libraries are a Micro-
soft standard binary file that can
be used by Delphi, C++, VB and
other languages that support
COM.

The Remote Dataset Wizard
automatically generates the type
library in a language neutral binary
file with a .TLB extension. It also
generates a Delphi implementa-
tion of the type library in a source
file called <project>_TLB.PAS.

Data Access
Within The Server
Within our Remote Data Module
we can place all the standard data-
set components (TTable, TQuery,
and TStoredProc) to gain access to

connectivity middleware such as
BDE, SQL Links, ODBC or native
database client DLLs. All the instal-
lation and configuration of the
database access middleware is
removed from the numerous client
workstations and centralized on
one or more application server
machines. Client configuration of
Delphi applications is drastically
simplified by only requiring the
single DBCLIENT.DLL library. The
total client footprint is also
reduced since, at 154Kb, DBCLI-
ENT.DLL is usually vastly smaller
than all the attendant database
connectivity libraries.

It is significantly easier to cen-
tralize business rules and data
manipulation logic within the
application server than it is to do
so within database triggers and
stored procedures. You have all
the power and speed of Delphi at
your disposal to write any code
that should be shared across all
client applications. This is much
like writing shared code within a
Delphi DLL, but in this case the
shared code can be run on a sepa-
rate machine, distributing the
system load.

Web-based applications, or web
extensions to an existing system,
are easier to deploy. Processor
intensive work is done on the
server end of the connection while
a thin client is hosted by the web
browser to act as the user inter-
face. MIDAS support is planned to
be added to JBuilder, so a JBuilder
application can access a MIDAS
application server just as easily as
a Delphi desktop application.

Automatic load balancing is
possible by having identical server
objects running on several differ-
ent machines. Clients can attach to
an ‘object broker’ which will dele-
gate the use of the available server
machines to even out the total
load. In a similar manner, fail-over
safety can be provided by switch-
ing to a different server machine
when one becomes unavailable or
goes down.

My First Multi-Tier
Database Application
So how do we go about spinning all
this magic with Delphi? Well, our

March 1998 The Delphi Magazine 13

our data. We can organize these
components in the same way we
would with a standard Data
Module in a standard client/server
database app. So we simply add
dataset components and event
handling logic within the Remote
Data Module, just as we would for
any other database application.
Each connecting client is guaran-
teed to have its own instance of the
server’s Remote Data Module, so
there will never be a conflict with
multiple clients accessing the
same dataset, possibly even with
different parameters. At runtime
there will be a private copy of each
dataset for each attached client.

Datasets within the server can
be manipulated directly by client
applications if we export an OLE
interface for the dataset. MIDAS
accommodates this through the
TProvider class. For each dataset
we wish to export, we must include
a TProvider class as well. Datasets
in a Remote Data Module can
implicitly create their own provid-
ers and we simply export them by
selecting Export from data module
from the dataset component’s con-
text menu. We can also provide our
own explicit TProvider component
by dropping one from the compo-
nent palette onto the Remote Data
Module and connecting it to the
dataset component. Again we
would export this provider by
selecting Export from data module
from the TProvider’s context menu.
Unless we export them in one of
these two ways, datasets within
the server are not visible to clients
and only serve as internal working
result sets for the server.

Once we have the basic shell of
the server app in place, we can
compile and run it. The server
application must be run once to
register it as an OLE Automation
object for that machine. Other-
wise, our client applications will
not recognize our server. OLE
Automation objects are registered
under the HKEY_CLASSES_ROOT\CLSID
key in the registry.

The Client Side
The client application in a multi-
tiered system does not contain any
TDatabase, TTable, TQuery or

TStoredProc components to sup-
port the data accessed through the
application server. These compo-
nents reside in the application
server itself. The client application
uses a TRemoteServer component as
a pipeline to the application
server, in much the same way the
TDatabase component served as a
pipeline to a database on the data-
base server. We set the ServerName
property to the name of the appli-
cation server we have created. If
the application server resides on a
different machine, we must iden-
tify that machine through the Com-
puterName property. We then set
the Connected property to True to
establish a live connection to the
application server.

Any datasets that the client
wishes to manipulate from the
application server are represented
by TClientDataSet components.
TClientDataSets are attached to
the corresponding TProvider com-
ponents in the application server
(see Figure 5). The provider
exports an OLE interface for the
dataset component and sends
server data to the client in data
packets. On the client side, the
TClientDataSet receives the data
packets from the TProvider and
constructs a local copy of the data-
set. The client app can attach a
standard TDataSource component
to the TClientDataSet to allow
data-aware controls to operate on
the data. In short, all our TQuery,
TTable, and TStoredProc compo-
nents in the client application are
replaced with TClientDataSet

components and moved into the
application server.

TClientDataSets are attached to
the TRemoteServer through the
RemoteServer property. This is
analogous to how we might attach
several dataset components to a
TDatabase through the Database-
Name property in a traditional data-
base application. Then we
associate each TClientDataSet
with a TProvider in the application
server by setting the ProviderName
property. Once everything is all
hooked up, we have a functioning
dataset component receiving its
data from the application server.

Accessing Server Methods
Datasets are not the only means by
which we can pass data between
application server and client appli-
cation. Just as we might declare
any number of ad-hoc methods in a
standard Data Module to support
the logic applied to the data, we
can do the same in the Remote
Data Module. In order for these
methods to be accessible from a
client, they must be interfaced.

When declaring an interfaced
method, right click in the Remote
Data Module source file and select
Add to Interface from the context
menu (or, alternatively, select Add
to Interface from Delphi’s Edit
menu). This brings up a dialog
(Figure 6) where we enter the
complete declaration of the

CLIENT TIERCLIENT TIERSERSERVER TIERVER TIER

TQueryTQuery,,
TTTTable, orable, or

TStoredProcTStoredProc

TProviderTProvider TClientDataSetTClientDataSet TDataSourceTDataSource

➤ Figure 5

➤ Figure 6

14 The Delphi Magazine Issue 31

method and its parameters. Click-
ing OK on this dialog causes the
method to be added into the
Remote Data Module source file as
well as the Type Library files. At
this point you can then proceed to
add code to the declared method
in the source file.

In the client application, the
interface to the remote server is
available to us in the AppServer
property of the TRemoteServer com-
ponent. So the method we just
added could be called like this:

RemoteServer.AppServer.Connect(
‘AUser’, ‘APassword’);

The datatypes of parameters and
function results of interfaced meth-
ods must be OLE Automation com-
patible types. In general, this
includes SmallInt, Integer, Single,
Double, Currency, TDateTime, Wide-
String, IDispatch, WordBool, Ole-
Variant, SCode, TColor, Byte,
TSafeArray and IUnknown. There are
some additional possibilities
outlined in Chapter 41 of the
Developer’s Guide manual shipped
with Delphi.

You might notice that if we use
parameterized queries as the basis
of a dataset on the server, TClient-
DataSet lacks the properties that
allow us to set the parameter
values. In that case we would have
to export a method from the server
object to receive and set the

➤ Figure 7
desired parameter values from the
client. The same is true for most
direct manipulation of dataset
component properties we might
have grown accustomed to in
traditional database development.

The Type Library Editor
Another way to flesh out the server
object is to access the type library
directly through the Type Library
Editor (see Figure 7). In Delphi you
can get to the Type Library Editor
by selecting View | Type Library
from the main menu, or with the
<project>_TLB.PAS file in the editor
window, pressing F12. This editor
allows you to add interfaces, prop-
erties, methods and so on to the
server object class. By clicking the
Refresh button on the toolbar, the
changes are posted in the .TLB file
and the <project>_TLB.PAS file is
regenerated to reflect the changes.
One thing you should be careful of:
when deleting existing properties
or methods in the server object,
the Type Library Editor is not
always good about removing the
generated code from the
associated Delphi units.

Son Of Cached Updates
Client applications working with
distributed datasets are always
working with a local copy of the
data. Data received from the
provider is cached on the local
machine. By default, the entire
dataset is fetched from the
provider at one time, but you can

alter this behavior with the TCli-
entDataSet.FetchOnDemand prop-
erty. Client datasets operate like
traditional datasets with CachedUp-
dates set to True. All modifications
made by the user are cached
locally until the dataset is commit-
ted by calling ApplyUpdates.
Because of their nature, cached
updates always carry along with
them the possibility that some
other user has modified the same
records you have and applied their
changes to the database before
you did.

Keep in mind that we are not
directly connected to the data-
base. When we apply updates, we
hand off all our changes to the
application server, which in turn
tries to apply them to the database
server. Any records that cannot be
committed successfully (because
of constraint violations not
already caught by the client, or
conflicting data changes made by
another user for example), are
returned to the client as a dataset
and the TClientDataSet’s OnRecon-
cileError event handler is called
for each one.

This handler gives the client
application an opportunity to
determine how to handle each con-
flict. Delphi ships with a prefabri-
cated reconciliation dialog which
you can add to your apps by select-
ing File | New | Dialogs | Recon-
cile Error Dialog from the Delphi
main menu. This dialog demon-
strates the full scope of actions
that can be performed via the
OnReconcileError event handler.
Even if you don’t use it as-is for
conflict reconciliation in your
application, studying its source
code will give you a good founda-
tion for handling conflicts.

The dialog displays the failed
record, and for each field which
conflicted shows the original
value, the value we tried to apply,
and the conflicting value already
on the server. The dialog allows
the user to correct the data by
hand and then re-apply, skip the
record, abort the reconciliation
process, merge the record as-is
into the existing record on the
server, and a number of other
possibilities.

16 The Delphi Magazine Issue 31

Briefcase Applications
TClientDataSet’s implementation
of local caching makes it possible
to build ‘briefcase’ applications, or
offline datasets. In this scenario, an
application would connect to the
application server and retrieve
data in a TClientDataSet. The appli-
cation could then disconnect from
the application server and the
cached dataset is unaffected. The
user can continue to operate on
the cached copy of the data for as
long as they want. Then they can
reconnect to the application
server and apply the updates,
dealing with any reconciliation
problems that may occur with con-
flicting updates made by other
users.

TClientDataSet also provides a
handy way to persistently store its
cached data with the SaveToFile
method. This method writes the
cached copy of the dataset into a
specially formatted file. The inverse
method LoadFromFile allows us to
prepopulate a TClientDataSet from
a disk file without actually connect-
ing to the application server. These
features allow you to create appli-
cations that can work with data
offline, and reconnect to the appli-
cation server later to apply changes
to the actual database.

For example, upon startup the
client app would check for the
existence of local data files on the
hard disk. If it finds any, it loads
them (TClientDataSet.LoadFrom-
File). The user can connect to the
remote server at anytime (TRemote-
Server.Connect := True). If we had
not previously loaded local data,
we would now fetch data from the
server (TClientDataSet.Open). We
can let the user apply their
changes to the server data
(TClientDataSet.ApplyChanges), or
abandon those changes (TClient-
DataSet.CancelChanges). At any
time the user can disconnect from
the server (TRemoteServer.Con-
nected = False), and continue to
work on the data. When the client
app shuts down, we can detect that
changes have been made to the
data (TClientDataSet.ChangeCount
<> 0). If changes were made, we can
save the dataset persistently
(TClientDataSet.SaveToFile).

Database Components
Recall that with a multi-instancing
class, there is only one instance of
the server application, but distinct
instances of the OLE Automation
server defined in the Remote Data
Module are created for each con-
necting client. Consider what
would happen if all clients shared
the same server object. Suppose
our server contains a TQuery with a
parameterized SQL statement of:

SELECT * FROM Employee WHERE
EmpNo = :EmpNo

If two clients were simultaneously
running this query using two differ-
ent values for the employee
number, then we have two com-
pletely different result sets for the
query, but only one TQuery compo-
nent. That is why each client gets
its own instance of the server class:
to keep its operating state inde-
pendent of all other clients.

Now, with regard to BDE access
to the database, all these instances
of the OLE Automation server are
sharing the same session of the
BDE. If we use a TDatabase compo-
nent in our Remote Data Module,
we are going to run into problems.
The TDatabase component regis-
ters its DatabaseName property with
the BDE session. Once the second
client connects to our server and
opens another instance of the
same TDatabase component, it will
try to register the same database
name with the BDE session. Since
database names cannot duplicate
within the same BDE session, we
get a Name not unique in this con-
text exception. Keep in mind that
this is not an issue with single
instancing servers because the
BDE sessions are isolated by virtue
of the fact that they reside in sepa-
rate processes running on the
machine.

One way to avoid this problem is
to put an explicit TSession compo-
nent in the Remote Data Module
and set its AutoSessionName prop-
erty to True. All the TDatabase and
dataset components are associ-
ated with explicit session through
the SessionName property. All the
data access components in the
OLE Automation server are now

guaranteed to have an independ-
ent BDE session, by virtue of the
explicit TSession component.

The problem of duplicating data-
base names disappears because
each database is isolated within its
own session. The sessions them-
selves are guaranteed to have
unique names because of the
AutoSessionName property.

Conclusion
Multi-tier application develop-
ment opens the door to a lot of
interesting possibilities in data-
base application development.
Delphi provides a great deal of
help to us in encapsulating the
interactions of the COM objects
and in handling distributed data-
sets via MIDAS. Splitting data
access, or any kind of system logic,
into a separate application
requires more attention to such
issues as object-oriented analysis
and design and the distinction of
user interface and business rule
code. In single- or two-tiered sys-
tems, it is easier to be sloppy about
the logical boundaries of the code.
Multi-tier architectures are much
less forgiving, and rightfully so.

Next month we’ll learn how to
use Microsoft SQL Server’s own
OLE Automation interface to make
multi-tier database applications
from a third-party interface.

Steve Troxell is a software
engineer with Ultimate Software
Group in the USA. He can be
reached via email as Steve_Troxell
@USGroup.com
Scott Samet is also a software
engineer with Ultimate Software
Group, as well as an active
member of Team B.

FOR THE LATEST
DELPHI NEWS
Visit the News
section of the

Developers Review
website at

www.itecuk.com

	Tiering Your Applications
	Can We Talk?
	Advantages Of Three-Tier Design
	My First Multi-Tier Database Application
	Server Class Instancing
	Data Access Within The Server
	The Client Side
	Accessing Server Methods
	The Type Library Editor
	Son Of Cached Updates
	Briefcase Applications
	Database Components
	Conclusion

